3.3.86 \(\int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx\) [286]

3.3.86.1 Optimal result
3.3.86.2 Mathematica [C] (verified)
3.3.86.3 Rubi [A] (verified)
3.3.86.4 Maple [A] (verified)
3.3.86.5 Fricas [B] (verification not implemented)
3.3.86.6 Sympy [F(-2)]
3.3.86.7 Maxima [A] (verification not implemented)
3.3.86.8 Giac [B] (verification not implemented)
3.3.86.9 Mupad [B] (verification not implemented)

3.3.86.1 Optimal result

Integrand size = 23, antiderivative size = 175 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\left (a^3 A-3 a A b^2+3 a^2 b B-b^3 B\right ) x}{\left (a^2+b^2\right )^3}+\frac {\left (3 a^2 A b-A b^3-a^3 B+3 a b^2 B\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^3 d}-\frac {A b-a B}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}-\frac {2 a A b-a^2 B+b^2 B}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))} \]

output
(A*a^3-3*A*a*b^2+3*B*a^2*b-B*b^3)*x/(a^2+b^2)^3+(3*A*a^2*b-A*b^3-B*a^3+3*B 
*a*b^2)*ln(a*cos(d*x+c)+b*sin(d*x+c))/(a^2+b^2)^3/d+1/2*(-A*b+B*a)/(a^2+b^ 
2)/d/(a+b*tan(d*x+c))^2+(-2*A*a*b+B*a^2-B*b^2)/(a^2+b^2)^2/d/(a+b*tan(d*x+ 
c))
 
3.3.86.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.04 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.39 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=-\frac {B \left (\frac {i \log (i-\tan (c+d x))}{(a+i b)^2}-\frac {i \log (i+\tan (c+d x))}{(a-i b)^2}+\frac {2 b \left (-2 a \log (a+b \tan (c+d x))+\frac {a^2+b^2}{a+b \tan (c+d x)}\right )}{\left (a^2+b^2\right )^2}\right )+(A b-a B) \left (\frac {i \log (i-\tan (c+d x))}{(a+i b)^3}-\frac {\log (i+\tan (c+d x))}{(i a+b)^3}+\frac {b \left (\left (-6 a^2+2 b^2\right ) \log (a+b \tan (c+d x))+\frac {\left (a^2+b^2\right ) \left (5 a^2+b^2+4 a b \tan (c+d x)\right )}{(a+b \tan (c+d x))^2}\right )}{\left (a^2+b^2\right )^3}\right )}{2 b d} \]

input
Integrate[(A + B*Tan[c + d*x])/(a + b*Tan[c + d*x])^3,x]
 
output
-1/2*(B*((I*Log[I - Tan[c + d*x]])/(a + I*b)^2 - (I*Log[I + Tan[c + d*x]]) 
/(a - I*b)^2 + (2*b*(-2*a*Log[a + b*Tan[c + d*x]] + (a^2 + b^2)/(a + b*Tan 
[c + d*x])))/(a^2 + b^2)^2) + (A*b - a*B)*((I*Log[I - Tan[c + d*x]])/(a + 
I*b)^3 - Log[I + Tan[c + d*x]]/(I*a + b)^3 + (b*((-6*a^2 + 2*b^2)*Log[a + 
b*Tan[c + d*x]] + ((a^2 + b^2)*(5*a^2 + b^2 + 4*a*b*Tan[c + d*x]))/(a + b* 
Tan[c + d*x])^2))/(a^2 + b^2)^3))/(b*d)
 
3.3.86.3 Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4012, 3042, 4012, 3042, 4014, 3042, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\int \frac {a A+b B-(A b-a B) \tan (c+d x)}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a A+b B-(A b-a B) \tan (c+d x)}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\int \frac {A a^2+2 b B a-A b^2-\left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {a^2 (-B)+2 a A b+b^2 B}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {A a^2+2 b B a-A b^2-\left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {a^2 (-B)+2 a A b+b^2 B}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 4014

\(\displaystyle \frac {\frac {\frac {\left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^3 A+3 a^2 b B-3 a A b^2-b^3 B\right )}{a^2+b^2}}{a^2+b^2}-\frac {a^2 (-B)+2 a A b+b^2 B}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^3 A+3 a^2 b B-3 a A b^2-b^3 B\right )}{a^2+b^2}}{a^2+b^2}-\frac {a^2 (-B)+2 a A b+b^2 B}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

\(\Big \downarrow \) 4013

\(\displaystyle \frac {\frac {\frac {\left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )}+\frac {x \left (a^3 A+3 a^2 b B-3 a A b^2-b^3 B\right )}{a^2+b^2}}{a^2+b^2}-\frac {a^2 (-B)+2 a A b+b^2 B}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {A b-a B}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\)

input
Int[(A + B*Tan[c + d*x])/(a + b*Tan[c + d*x])^3,x]
 
output
-1/2*(A*b - a*B)/((a^2 + b^2)*d*(a + b*Tan[c + d*x])^2) + ((((a^3*A - 3*a* 
A*b^2 + 3*a^2*b*B - b^3*B)*x)/(a^2 + b^2) + ((3*a^2*A*b - A*b^3 - a^3*B + 
3*a*b^2*B)*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)*d))/(a^2 + b 
^2) - (2*a*A*b - a^2*B + b^2*B)/((a^2 + b^2)*d*(a + b*Tan[c + d*x])))/(a^2 
 + b^2)
 

3.3.86.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 
3.3.86.4 Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.19

method result size
derivativedivides \(\frac {\frac {\frac {\left (-3 A \,a^{2} b +A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (A \,a^{3}-3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}+\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}-\frac {A b -B a}{2 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{2}}-\frac {2 A a b -B \,a^{2}+B \,b^{2}}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )}}{d}\) \(208\)
default \(\frac {\frac {\frac {\left (-3 A \,a^{2} b +A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (A \,a^{3}-3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}+\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{3}}-\frac {A b -B a}{2 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{2}}-\frac {2 A a b -B \,a^{2}+B \,b^{2}}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )}}{d}\) \(208\)
norman \(\frac {\frac {\left (A \,a^{3}-3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) a^{2} x}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (a^{2}+b^{2}\right )}+\frac {b^{2} \left (A \,a^{3}-3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) x \left (\tan ^{2}\left (d x +c \right )\right )}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (a^{2}+b^{2}\right )}-\frac {3 A \,a^{2} b^{2}+A \,b^{4}-2 B \,a^{3} b}{2 b d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {b \left (2 A a \,b^{2}-B \,a^{2} b +B \,b^{3}\right ) \left (\tan ^{2}\left (d x +c \right )\right )}{2 d a \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {2 b \left (A \,a^{3}-3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) a x \tan \left (d x +c \right )}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (a^{2}+b^{2}\right )}}{\left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}-\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}\) \(437\)
risch \(\frac {i x B}{3 i a^{2} b -i b^{3}-a^{3}+3 a \,b^{2}}-\frac {x A}{3 i a^{2} b -i b^{3}-a^{3}+3 a \,b^{2}}-\frac {6 i A \,a^{2} b x}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {2 i A \,b^{3} x}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}+\frac {2 i B x \,a^{3}}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {6 i B a \,b^{2} x}{a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}}-\frac {6 i A \,a^{2} b c}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}+\frac {2 i A \,b^{3} c}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}+\frac {2 i B \,a^{3} c}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}-\frac {6 i B a \,b^{2} c}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}-\frac {2 i \left (2 i A a \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}-i B \,a^{2} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-A \,b^{4} {\mathrm e}^{2 i \left (d x +c \right )}-3 i A a \,b^{3}+2 i B \,a^{2} b^{2}-B a \,b^{3}+i B \,b^{4} {\mathrm e}^{2 i \left (d x +c \right )}-3 A \,a^{2} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+2 B \,a^{3} b \,{\mathrm e}^{2 i \left (d x +c \right )}-i B \,b^{4}-3 A \,a^{2} b^{2}+2 B \,a^{3} b \right )}{\left (i b +a \right )^{2} \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+a \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +a \right )^{2} d \left (-i b +a \right )^{3}}+\frac {3 a^{2} b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) A}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}-\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) A \,b^{3}}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}-\frac {a^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) B}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) B a \,b^{2}}{d \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right )}\) \(803\)
parallelrisch \(\text {Expression too large to display}\) \(920\)

input
int((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d*(1/(a^2+b^2)^3*(1/2*(-3*A*a^2*b+A*b^3+B*a^3-3*B*a*b^2)*ln(1+tan(d*x+c) 
^2)+(A*a^3-3*A*a*b^2+3*B*a^2*b-B*b^3)*arctan(tan(d*x+c)))+(3*A*a^2*b-A*b^3 
-B*a^3+3*B*a*b^2)/(a^2+b^2)^3*ln(a+b*tan(d*x+c))-1/2*(A*b-B*a)/(a^2+b^2)/( 
a+b*tan(d*x+c))^2-(2*A*a*b-B*a^2+B*b^2)/(a^2+b^2)^2/(a+b*tan(d*x+c)))
 
3.3.86.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 482 vs. \(2 (171) = 342\).

Time = 0.27 (sec) , antiderivative size = 482, normalized size of antiderivative = 2.75 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {5 \, B a^{3} b^{2} - 7 \, A a^{2} b^{3} - B a b^{4} - A b^{5} + 2 \, {\left (A a^{5} + 3 \, B a^{4} b - 3 \, A a^{3} b^{2} - B a^{2} b^{3}\right )} d x - {\left (3 \, B a^{3} b^{2} - 5 \, A a^{2} b^{3} - 3 \, B a b^{4} + A b^{5} - 2 \, {\left (A a^{3} b^{2} + 3 \, B a^{2} b^{3} - 3 \, A a b^{4} - B b^{5}\right )} d x\right )} \tan \left (d x + c\right )^{2} - {\left (B a^{5} - 3 \, A a^{4} b - 3 \, B a^{3} b^{2} + A a^{2} b^{3} + {\left (B a^{3} b^{2} - 3 \, A a^{2} b^{3} - 3 \, B a b^{4} + A b^{5}\right )} \tan \left (d x + c\right )^{2} + 2 \, {\left (B a^{4} b - 3 \, A a^{3} b^{2} - 3 \, B a^{2} b^{3} + A a b^{4}\right )} \tan \left (d x + c\right )\right )} \log \left (\frac {b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) - 2 \, {\left (2 \, B a^{4} b - 3 \, A a^{3} b^{2} - 3 \, B a^{2} b^{3} + 3 \, A a b^{4} + B b^{5} - 2 \, {\left (A a^{4} b + 3 \, B a^{3} b^{2} - 3 \, A a^{2} b^{3} - B a b^{4}\right )} d x\right )} \tan \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} d \tan \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b + 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} + a b^{7}\right )} d \tan \left (d x + c\right ) + {\left (a^{8} + 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} + a^{2} b^{6}\right )} d\right )}} \]

input
integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 
output
1/2*(5*B*a^3*b^2 - 7*A*a^2*b^3 - B*a*b^4 - A*b^5 + 2*(A*a^5 + 3*B*a^4*b - 
3*A*a^3*b^2 - B*a^2*b^3)*d*x - (3*B*a^3*b^2 - 5*A*a^2*b^3 - 3*B*a*b^4 + A* 
b^5 - 2*(A*a^3*b^2 + 3*B*a^2*b^3 - 3*A*a*b^4 - B*b^5)*d*x)*tan(d*x + c)^2 
- (B*a^5 - 3*A*a^4*b - 3*B*a^3*b^2 + A*a^2*b^3 + (B*a^3*b^2 - 3*A*a^2*b^3 
- 3*B*a*b^4 + A*b^5)*tan(d*x + c)^2 + 2*(B*a^4*b - 3*A*a^3*b^2 - 3*B*a^2*b 
^3 + A*a*b^4)*tan(d*x + c))*log((b^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + 
 a^2)/(tan(d*x + c)^2 + 1)) - 2*(2*B*a^4*b - 3*A*a^3*b^2 - 3*B*a^2*b^3 + 3 
*A*a*b^4 + B*b^5 - 2*(A*a^4*b + 3*B*a^3*b^2 - 3*A*a^2*b^3 - B*a*b^4)*d*x)* 
tan(d*x + c))/((a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d*tan(d*x + c)^2 + 
2*(a^7*b + 3*a^5*b^3 + 3*a^3*b^5 + a*b^7)*d*tan(d*x + c) + (a^8 + 3*a^6*b^ 
2 + 3*a^4*b^4 + a^2*b^6)*d)
 
3.3.86.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\text {Exception raised: AttributeError} \]

input
integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))**3,x)
 
output
Exception raised: AttributeError >> 'NoneType' object has no attribute 'pr 
imitive'
 
3.3.86.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.83 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\frac {2 \, {\left (A a^{3} + 3 \, B a^{2} b - 3 \, A a b^{2} - B b^{3}\right )} {\left (d x + c\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {2 \, {\left (B a^{3} - 3 \, A a^{2} b - 3 \, B a b^{2} + A b^{3}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (B a^{3} - 3 \, A a^{2} b - 3 \, B a b^{2} + A b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {3 \, B a^{3} - 5 \, A a^{2} b - B a b^{2} - A b^{3} + 2 \, {\left (B a^{2} b - 2 \, A a b^{2} - B b^{3}\right )} \tan \left (d x + c\right )}{a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4} + {\left (a^{4} b^{2} + 2 \, a^{2} b^{4} + b^{6}\right )} \tan \left (d x + c\right )^{2} + 2 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (d x + c\right )}}{2 \, d} \]

input
integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 
output
1/2*(2*(A*a^3 + 3*B*a^2*b - 3*A*a*b^2 - B*b^3)*(d*x + c)/(a^6 + 3*a^4*b^2 
+ 3*a^2*b^4 + b^6) - 2*(B*a^3 - 3*A*a^2*b - 3*B*a*b^2 + A*b^3)*log(b*tan(d 
*x + c) + a)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + (B*a^3 - 3*A*a^2*b - 3* 
B*a*b^2 + A*b^3)*log(tan(d*x + c)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^ 
6) + (3*B*a^3 - 5*A*a^2*b - B*a*b^2 - A*b^3 + 2*(B*a^2*b - 2*A*a*b^2 - B*b 
^3)*tan(d*x + c))/(a^6 + 2*a^4*b^2 + a^2*b^4 + (a^4*b^2 + 2*a^2*b^4 + b^6) 
*tan(d*x + c)^2 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*tan(d*x + c)))/d
 
3.3.86.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 409 vs. \(2 (171) = 342\).

Time = 0.54 (sec) , antiderivative size = 409, normalized size of antiderivative = 2.34 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\frac {2 \, {\left (A a^{3} + 3 \, B a^{2} b - 3 \, A a b^{2} - B b^{3}\right )} {\left (d x + c\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (B a^{3} - 3 \, A a^{2} b - 3 \, B a b^{2} + A b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {2 \, {\left (B a^{3} b - 3 \, A a^{2} b^{2} - 3 \, B a b^{3} + A b^{4}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}} + \frac {3 \, B a^{3} b^{2} \tan \left (d x + c\right )^{2} - 9 \, A a^{2} b^{3} \tan \left (d x + c\right )^{2} - 9 \, B a b^{4} \tan \left (d x + c\right )^{2} + 3 \, A b^{5} \tan \left (d x + c\right )^{2} + 8 \, B a^{4} b \tan \left (d x + c\right ) - 22 \, A a^{3} b^{2} \tan \left (d x + c\right ) - 18 \, B a^{2} b^{3} \tan \left (d x + c\right ) + 2 \, A a b^{4} \tan \left (d x + c\right ) - 2 \, B b^{5} \tan \left (d x + c\right ) + 6 \, B a^{5} - 14 \, A a^{4} b - 7 \, B a^{3} b^{2} - 3 \, A a^{2} b^{3} - B a b^{4} - A b^{5}}{{\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{2}}}{2 \, d} \]

input
integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^3,x, algorithm="giac")
 
output
1/2*(2*(A*a^3 + 3*B*a^2*b - 3*A*a*b^2 - B*b^3)*(d*x + c)/(a^6 + 3*a^4*b^2 
+ 3*a^2*b^4 + b^6) + (B*a^3 - 3*A*a^2*b - 3*B*a*b^2 + A*b^3)*log(tan(d*x + 
 c)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - 2*(B*a^3*b - 3*A*a^2*b^2 
- 3*B*a*b^3 + A*b^4)*log(abs(b*tan(d*x + c) + a))/(a^6*b + 3*a^4*b^3 + 3*a 
^2*b^5 + b^7) + (3*B*a^3*b^2*tan(d*x + c)^2 - 9*A*a^2*b^3*tan(d*x + c)^2 - 
 9*B*a*b^4*tan(d*x + c)^2 + 3*A*b^5*tan(d*x + c)^2 + 8*B*a^4*b*tan(d*x + c 
) - 22*A*a^3*b^2*tan(d*x + c) - 18*B*a^2*b^3*tan(d*x + c) + 2*A*a*b^4*tan( 
d*x + c) - 2*B*b^5*tan(d*x + c) + 6*B*a^5 - 14*A*a^4*b - 7*B*a^3*b^2 - 3*A 
*a^2*b^3 - B*a*b^4 - A*b^5)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*(b*tan(d* 
x + c) + a)^2))/d
 
3.3.86.9 Mupad [B] (verification not implemented)

Time = 8.25 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.59 \[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx=\frac {\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (\frac {3\,A\,b-B\,a}{{\left (a^2+b^2\right )}^2}-\frac {4\,b^2\,\left (A\,b-B\,a\right )}{{\left (a^2+b^2\right )}^3}\right )}{d}-\frac {\frac {-3\,B\,a^3+5\,A\,a^2\,b+B\,a\,b^2+A\,b^3}{2\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (-B\,a^2\,b+2\,A\,a\,b^2+B\,b^3\right )}{a^4+2\,a^2\,b^2+b^4}}{d\,\left (a^2+2\,a\,b\,\mathrm {tan}\left (c+d\,x\right )+b^2\,{\mathrm {tan}\left (c+d\,x\right )}^2\right )}+\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (-B+A\,1{}\mathrm {i}\right )}{2\,d\,\left (-a^3-a^2\,b\,3{}\mathrm {i}+3\,a\,b^2+b^3\,1{}\mathrm {i}\right )}+\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (A-B\,1{}\mathrm {i}\right )}{2\,d\,\left (-a^3\,1{}\mathrm {i}-3\,a^2\,b+a\,b^2\,3{}\mathrm {i}+b^3\right )} \]

input
int((A + B*tan(c + d*x))/(a + b*tan(c + d*x))^3,x)
 
output
(log(a + b*tan(c + d*x))*((3*A*b - B*a)/(a^2 + b^2)^2 - (4*b^2*(A*b - B*a) 
)/(a^2 + b^2)^3))/d - ((A*b^3 - 3*B*a^3 + 5*A*a^2*b + B*a*b^2)/(2*(a^4 + b 
^4 + 2*a^2*b^2)) + (tan(c + d*x)*(B*b^3 + 2*A*a*b^2 - B*a^2*b))/(a^4 + b^4 
 + 2*a^2*b^2))/(d*(a^2 + b^2*tan(c + d*x)^2 + 2*a*b*tan(c + d*x))) + (log( 
tan(c + d*x) - 1i)*(A*1i - B))/(2*d*(3*a*b^2 - a^2*b*3i - a^3 + b^3*1i)) + 
 (log(tan(c + d*x) + 1i)*(A - B*1i))/(2*d*(a*b^2*3i - 3*a^2*b - a^3*1i + b 
^3))